Efficient GPU Implementation for Single Block Orthogonal Dictionary Learning
نویسنده
چکیده
Dictionary training for sparse representations involves dealing with large chunks of data and complex algorithms that determine time consuming implementations. SBO is an iterative dictionary learning algorithm based on constructing unions of orthonormal bases via singular value decomposition, that represents each data item through a single best fit orthobase. In this paper we present a GPGPU approach of implementing SBO in OpenCL. We provide a lock-free solution that ensures full-occupancy of the GPU by following the map-reduce model for the sparse-coding stage and by making use of the Partitioned Global Address Space (PGAS) model for developing parallel dictionary updates. The resulting implementation achieves a favourable trade-off between algorithm complexity and data representation quality compared to PAK-SVD which is the standard overcomplete dictionary learning approach. We present and discuss numerical results showing a significant acceleration of the execution time for the dictionary learning process.
منابع مشابه
Parallel algorithm implementation for multi-object tracking and surveillance
The objective of this paper is to propose a parallel implementation of dictionary learning based multiperson tracking on single camera. After its success of face recognition, dictionary learning is recently adapted to multi-person tracking and achieves very promising results [2]. However, by recognizing that the computational complexity of dictionary learning is a big factor preventing tracking...
متن کاملParallel Implementation of Particle Swarm Optimization Variants Using Graphics Processing Unit Platform
There are different variants of Particle Swarm Optimization (PSO) algorithm such as Adaptive Particle Swarm Optimization (APSO) and Particle Swarm Optimization with an Aging Leader and Challengers (ALC-PSO). These algorithms improve the performance of PSO in terms of finding the best solution and accelerating the convergence speed. However, these algorithms are computationally intensive. The go...
متن کاملDiscriminative Convolutional Sum-Product Networks on GPU
Sum-Product Networks (SPNs) are a deep architecture recently proposed for image classification and modeling. In contrast to loopy graphical models commonly used in computer vision, exact inference and learning in SPNs is tractable. As long as consistency and completeness are ensured, an SPN allows to efficiently calculate the partition function and all marginals of graphical models. The propose...
متن کاملSingle-Carrier Frequency-Domain Equalization for Orthogonal STBC over Frequency-Selective MIMO-PLC channels
In this paper we propose a new space diversity scheme for broadband PLC systems using orthogonal space-time block coding (OSTBC) transmission combined with single-carrier frequency-domain equalization (SC-FDE). To apply this diversity technique to PLC channels, we first propose a new technique for combining SC-FDE with OSTBCs applicable to all dispersive multipath channels impaired by impulsive...
متن کاملDiscriminative Training of Structured Dictionaries via Block Orthogonal Matching Pursuit
It is well established that high-level representations learned via sparse coding are effective for many machine learning applications such as denoising and classification. In addition to being reconstructive, sparse representations that are discriminative and invariant can further help with such applications. In order to achieve these desired properties, this paper proposes a new framework that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1412.4944 شماره
صفحات -
تاریخ انتشار 2014